CapelliniSpTRSV: A Thread-Level Synchronization-Free
Sparse Triangular Solve on GPUs

Jiya Su®, Feng Zhang®, Weifeng Liu*, Bingsheng He*, Ruofan Wu°, Xiaoyong Du®, Rujia Wang?
°Key Laboratory of Data Engineering and Knowledge Engineering (MOE), and School of Information,
Renmin University of China
*Super Scientific Software Laboratory, Department of Computer Sci & Tech, China University of Petroleum - Beijing
*School of Computing, National University of Singapore
fComputer Science Department, Illinois Institute of Technology
Jiya_Su@ruc.edu.cn, fengzhang@ruc.edu.cn, weifeng.liu@cup.edu.cn, hebs@comp.nus.edu.sg,
2017202106@ruc.edu.cn, duyong@ruc.edu.cn, rwang67@iit.edu

ABSTRACT

Sparse triangular solves (SpTRSVs) have been extensively used in
linear algebra fields, and many GPU-based SpTRSV algorithms have
been proposed. Synchronization-free SpTRSVs, due to their short
preprocessing time and high performance, are currently the most
popular SpTRSV algorithms. However, we observe that the per-
formance of those SpTRSV algorithms on different matrices can
vary greatly by 845 times. Our further studies show that when the
average number of components per level is high and the average
number of nonzero elements per row is low, those SpTRSVs ex-
hibit extremely low performance. The reason is that, they use a
warp on the GPU to process a row in sparse matrices, and such
warp-level designs have severe underutilization of the GPU. To
solve this problem, we propose CapelliniSpTRSV, a thread-level
synchronization-free SpTRSV algorithm. Particularly, CapelliniSp-
TRSV has three novel features. First, unlike the previous studies,
CapelliniSpTRSV does not need preprocessing to calculate levels.
Second, CapelliniSpTRSV exhibits high performance on matrices
that previous SpTRSVs cannot handle efficiently. Third, CapelliniSp-
TRSV’s optimization does not rely on specific sparse matrix storage
format. Instead, it can achieve very good performance on the most
popular sparse matrix storage, compressed sparse row (CSR) format,
and thus users do not need to conduct format conversion. We eval-
uate CapelliniSpTRSV with 245 matrices from the Florida Sparse
Matrix Collection on three GPU platforms, and experiments show
that our SpTRSV exhibits 6.84 GFLOPS/s, which is 4.97x speedup
over the state-of-the-art synchronization-free SpTRSV algorithm,
and 4.74x speedup over the SpTRSV in cuSPARSE. CapelliniSpTRSV
is open-sourced in https://github.com/JiyaSu/CapelliniSpTRSV.

ACM Reference Format:
Jiya Su®, Feng Zhang®, Weifeng Liu*, Bingsheng He™, Ruofan Wu?®, Xiaoy-

ong Du®, Rujia Wang?¥. 2020. CapelliniSpTRSV: A Thread-Level Synchronization-

Free Sparse Triangular Solve on GPUs. In 49th International Conference

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICPP °20, August 17-20, 2020, Edmonton, AB, Canada

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8816-0/20/08...$15.00
https://doi.org/10.1145/3404397.3404400

on Parallel Processing - ICPP (ICPP °20), August 17-20, 2020, Edmonton,
AB, Canada. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
3404397.3404400

1 INTRODUCTION

Sparse triangular solves (SpTRSVs) are widely used in linear algebra
fields, and have been indispensable building blocks in many numeri-
cal linear algebra routines, such as least-squares problems [4], direct
methods [8], and preconditioners of sparse iterative solvers [34].
For an equation set, Lx = b, where L is a lower triangular sparse ma-
trix, x is the target solution vector, and b is a dense vector, SpTRSV
computes the target solution vector x based on L and b. Because
GPUs demonstrate powerful computing capabilities in the field
of linear algebra, researchers have been exploring using GPUs to
parallelize the SpTRSV algorithms. However, compared with other
linear algebra algorithms for sparse matrices [19], such as sparse
matrix-matrix multiplication [22, 26], sparse matrix-vector multipli-
cation [6, 11, 12, 23, 24, 37], and sparse transposition [45], SpTRSV
is challenging to be efficiently parallelized because there are more
internal dependencies in the solution process.

To parallel the SpTRSV algorithm, we need to understand more
details about SpTRSV: the solution in SpTRSV can be divided into
subsolutions for each component x;, which can be parallelized.
There exist dependencies in the solutions for each x;: solving a
component x; may depend on the other components x; (j < i).
Furthermore, the dependency relationships in the component solu-
tions can be described in a directed acyclic graph (DAG), and the
components in the dependency DAG can be divided into different
levels. The components at the same level can be solved in parallel.
In the worst case, only one component exists in one level, so there
is no parallelism in this case.

Many parallel SpTRSV algorithms on GPUs have been developed
in recent years. To address the dependency problem, a level-set
SpTRSV algorithm has been proposed [1, 35], which involves a
preprocessing step to group the components in the same level
into a set, and the components in the same set can be solved in
parallel. However, such a level-set preprocessing often takes too
much time [20]; in our experiment, the preprocessing time could
be dozens of times to the execution time of solving SpTRSV itself.
Moreover, Li et al. [16] pointed out that the inter-level synchroniza-
tion incurs large performance overhead in the level-set SpTRSV.

https://github.com/JiyaSu/CapelliniSpTRSV
https://doi.org/10.1145/3404397.3404400
https://doi.org/10.1145/3404397.3404400
https://doi.org/10.1145/3404397.3404400

ICPP °20, August 17-20, 2020, Edmonton, AB, Canada

Although recent level-set SpTRSV optimizations, such as simplify-
ing synchronization by pruning [30] and replacing synchronization
by atomic operations [20], reduce the number of synchronizations,
the synchronization overhead is still prohibitively high. Later, Liu
and others [20] proposed a synchronization-free SpTRSV algorithm,
which solves the synchronization problem and greatly reduces the
preprocessing time. Currently, this algorithm is the state-of-the-
art SpTRSV algorithm, which outperforms other algorithms on a
wide range of workloads. However, this algorithm only consider
GPU warp-level parallelism, and we find that such a warp-level
synchronization-free SpTRSV algorithm exhibits significant perfor-
mance degradation when 1) the average number of components
per level is large, and 2) the number of related nonzero elements
for each row is small.

Solving such synchronization-free SpTRSV performance degra-
dation problems requires handling the following three challenges.
First, new SpTRSV algorithms need to be designed to avoid thread
idle within warps on GPU. Second, novel intra-warp communica-
tion mechanisms need to be carefully designed to avoid deadlocks,
since threads within a warp in GPU execute in a lock-step manner.
Third, preprocessing time should be avoided for the usability and
applicability of SpTRSV.

To solve the challenges above, we propose CapelliniSpTRSV,
a thread-level synchronization-free SpTRSV algorithm, to address
the sparse situations that current synchronization-free SpTRSV
algorithm cannot handle efficiently. Those matrices that have a
large number of components per level and a small number of nonzero
elements per row are commonly seen in graph applications. Thus, we
develop an indicator, parallel granularity, detailed in Section 3.2,
to comprehensively describe these two characteristics of sparse
matrices. A high parallel granularity means that the warp-level
synchronization-free SpTRSV algorithms may not be able to fully
utilize GPU resources.

The high-level idea of CapelliniSpTRSV is that we use one thread
to solve one component, which avoids the resource waste caused by
idle threads. Moreover, in order to improve SpTRSV performance
in a holistic manner, CapelliniSpTRSV has three novel features.
First, unlike the previous studies, CapelliniSpTRSV does not need
preprocessing phase to calculate the levels in advance. Second,
CapelliniSpTRSV exhibits high performance on matrices that have
high parallel granularities, which is complementary to current warp-
level synchronization-free SpTRSVs. Third, CapelliniSpTRSV’s op-
timization does not rely on specific sparse matrix storage format.
Instead, it can achieve very good performance on the most popular
sparse matrix storage, compressed sparse row (CSR) format, and
thus users do not need to conduct format conversion in advance.

We evaluate CapelliniSpTRSV with 245 matrices from the Uni-
versity of Florida Sparse Matrix Collection [7] on three GPU plat-
forms, and compare our method with the state-of-the-art SpTRSV
algorithm [20] and the SpPTRSV in cuSPARSE [28]. The experimen-
tal results show that CapelliniSpTRSV exhibits high efficiency for
the matrices that have high parallel granularity. CapelliniSpTRSV
achieves on average 4.97x performance speedup over the state-of-
the-art SpTRSV algorithm [20], and 4.74x speedup over the SpTRSV
in cuSPARSE.

The remainder of the paper is organized as follows. Section 2
present the preliminaries and a summary about current SpTRSV

Jiya Su, Feng Zhang, Weifeng Liu, Bingsheng He, Ruofan Wu, Xiaoyong Du, Rujia Wang

algorithms. Section 3 presents the insights and experimental studies
as motivations, followed by the design in Section 4. We present
the experiments in Section 5, and review related work in Section 6.
Finally, we conclude in Section 7.

2 PRELIMINARIES

In this section, we first discuss the background and preliminaries
about SpTRSV, including the basic SpTRSV, level-set SpTRSV, and
synchronization-free SpTRSV. Then, we summarize and compare
current SpTRSV algorithms, and identify their limitations.

2.1 Concepts and Basic SpTRSV

We first introduce the basic concepts that are essential for under-
standing SpTRSV. For the equation set, Lx = b, we provide the
following concepts.

e Component: An element in solution vector x.

Element: A nonzero element in matrix L, such as Lg,o.

Dependency: If the solution of component x; needs the

value of component xj, x; has a dependency on x;.

o Level: A solution order according to the dependencies among
components. The components at the same level form a level-
set.

Sparse matrix in CSR format The compressed sparse row
(CSR) format is the most popular sparse matrix compression for-
mat, storing a matrix in three arrays without zero values. Figure 1
illustrates a sparse triangular matrix L in SpTRSV. Figure 1 (a) shows
an 8-by-8 sparse triangular matrix, which can be divided into four
level sets, as shown in Figure 1 (b). The matrix in Figure 1 (a) can
be further stored in Figure 1 (c). The array csrRowPtr stores the be-
ginning position of each row, the array csrColldx stores the column
numbers of each element, and the array csrVal stores the values.

Lower Triangular Matrix L

ol1|2|3|a|5]|6]7
Level0 [0 | 1
Level 0 | 1 1
Level 1 | 2 101
Level 2 | 3 17171
Level 1 | 4|1 | 1 1
Level 2 | 5 1 1
Level 3|6 | 1 1 1)1
Level 2 | 7 111 1
(a) Matrix L. (b) Components x in the levelsets.
csrRowPtr = (0, 1, 2, 4,7, 10, 12, 16, 20)
csrColldx = (0,1,1,2,1,2,3,0,1,4,2,5,0,2,5,6,0,1,2,7) ©CSR
esrval = (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1) representation.

Figure 1: Lower triangular matrix L in CSR format: (a) the
color shows the level of the row; (b) dependency of the com-
ponents x. Each component relates to one row, and there are
four level-sets in L; (c) the CSR format.

Basic SpTRSV Algorithm We show the basic SpTRSV in Algo-
rithm 1. The algorithm traverses all rows (Line 1). In each row; it
calculates all elements in the row except the last one, and stores
the value in intermediate variable le ft_sum (Lines 3-4). At last, the
component of the solution vector x in the same row is solved (Lines
5-6).

CapelliniSpTRSV: A Thread-Level Synchronization-Free
Sparse Triangular Solve on GPUs

Algorithm 1 Basic SpTRSV Algorithm for Lx = b

1: fori=0tom—1do > m is the number of rows.
2 left_sum « 0

3: for j = csrRowPtr[i] to cstRowPtr[i+1]-2 do

4: left_sum « left_sum+csrVal[j]xx[csrColld[;]]
5 xi « (b[i] - left_sum) / csrVal[cstRowPtr[i+1]-1]
6 x[i] « xi

2.2 Level-Set SpTRSV

As discussed in Section 2.1, the components x; at the same level
can be solved independently and simultaneously. Therefore, the
components can be partitioned into different level-sets, so that
the components in the same set can be solved in parallel, while
the sets are processed sequentially. Each set relates to one level.
However, a preprocessing is required for generating level-sets. In
the preprocessing stage of the previous studies [1, 35], the algorithm
stores the level-set number in layer, records the row number in
each level in the array layer_num, and rearranges the order of rows
according to their levels in the array order.

Level-Set SpTRSV Algorithm We show the Level-Set Sp)TRSV
algorithm in Algorithm 2. The algorithm partitions the components
into level-sets, and the components in the same level-set can be
solved in parallel (Line 2), where id is the row number to solve (Line
3). After calculating the whole nonzero elements in the row (Lines
4-6), the component x;4 is obtained (Lines 7-8). However, to make
sure all the related components have been calculated out, all threads
have to wait until the whole components in the set are solved (Line
9). Such synchronizations can be costly in the execution time.

Algorithm 2 Level-Set SpTRSV Algorithm for Lx = b

1: fori =0to layer —1do

2 for k=layer_num[i] to layer_num[i+1]-1 in parallel do

3 id < order[k]

4: left_sum « 0

5: for j=csrRowPtr[id] to cstRowPtr[id+1]-2 do

6 left_sum « left_sum + csrVal[j] X x[csrColldx[]]
7 xi «(b[id]-left_sum)/csrVal[csrRowPtr[id+1]-1]

8 x[id] « xi

9

_synchronize

2.3 Synchronization-Free SpTRSV

Because Level-Set SpTRSV method involves long preprocessing
time and has a bottleneck in synchronization, Liu et al. [20] intro-
duced a synchronization-free algorithm for GPUs in CSC format
(similar to CSR format except that values are stored in column order).
Another previous study [9] proposed a similar synchronization-
free algorithm in CSR format. The basic idea is to add a new flag
array get_value to show whether the component is solved or not
and use a warp to compute a component in parallel according to
the original row order of the input matrix, which avoids the syn-
chronization and greatly reduces the processing time. Currently,
the synchronization-free SpTRSV algorithm is the state-of-the-art
SpTRSV algorithm.

Synchronization-Free SpTRSV Algorithm The detailed al-
gorithm is shown in Algorithm 3. In Algorithm 3, the algorithm

ICPP °20, August 17-20, 2020, Edmonton, AB, Canada

computes components in the original row order of the input matrix
and uses one warp (warp_size threads) to compute one row (Line 3).
When calculating the nonzero elements in the row, each thread only
computes part of elements in parallel (Lines 8-12). When a thread
computes the element [; .,;, to make sure x.,; is solved, the thread
needs to wait until its flag get_value is set to true (Lines 10-11),
and then calculates the value (Line 12). Next, we add the intermedi-
ate results in the warp_size threads of a warp together in parallel
with the shared array le ft_sum (Lines 13-17). After calculating the
whole nonzero elements in row, we obtain the component x; and
set get_valueli] to true (Lines 18-22).

Algorithm 3 Synchronization-Free SpTRSV Algorithm for Lx = b

: MALLOC (xget_value, m)

2: MEMSET (xget_value, 0)

3: for i = 0 to m — 1 in parallel do
component.

4: MALLOC (xleft_sum,WARP_SIZE)

5: MEMSET (xleft_sum, 0)

6: for thread_id=0 to WARP_SIZE-1 in parallel do » One thread for

one nonzero

> m is the number of rows.

—_

> One concurrent warp for one

7: sum <0

8: for j=csrRowPtr[i]+thread_id to csrRowPtr[i+1]-2 Step
WARP_SIZE do > Step means j+=WARP_SIZE.

9: col = csrColldx[j]

10: while (get_value[col] # true) do

11: /I busywait

12: sum « sum + csrVal[j] X x[col]

13: left_sum[thread_id] < sum

14: add_len « 16

15: while add_len > 0 do

16: if thread_id < add_len then

17: left_sum([thread_id] < left_sum[thread_id] +
left_sum[thread_id + add_len]

18: if thread_id = 0 then

19: xi «—(b[i]-left_sum[thread_id])/csrVal [cstrRowPtr[i+1]-
1]

20: x[i] « xi

21: __threadfence()

22: get_value[i] « true

23: FREE (xget_value)

2.4 cuSPARSE Library

cuSPARSE Library [28] provides functions for SpTRSV directly.
Since cuSPARSE is not open-sourced, we do not know the imple-
mentation details it adopts, and can only treat it as a black box.
Compared to the performance of SpTRSV in cuSPARSE version 7.5
used in [21], the performance in cuSPARSE version 8.0 used in this
paper doubles. It shows the significant improvement of SpTRSV
in cuSPARSE, which can be viewed as a strong state-of-the-art
approach for comparison.

2.5 Summary

We summarize the differences between the three SpTRSV algo-
rithms and test their performance with three random sparse matri-
ces. As shown in Table 1, we can observe that the synchronization-
free SpTRSV algorithm exhibits short preprocessing time and high
performance. In comparison, the preprocessing time of the Level-Set

ICPP °20, August 17-20, 2020, Edmonton, AB, Canada

SpTRSV algorithm is very long, which greatly limits their applica-
bility. Other sparse matrices exhibit similar phenomena.

Table 1: Case study for preprocessing time and execution
time of different SpTRSV algorithms.

Algorithm Time (ms) nlpkkt160 wiki-Talk cant
a1 T o
T
ropen T o8 o

We also summarize the properties of current SpTRSV algorithms
in Table 2, including the preprocessing time, storage format, syn-
chronization, and granularity. Our findings are as follows. First,
synchronization-free algorithm has low preprocessing overhead
and high performance, which is the current trend for SpTRSV. Sec-
ond, although the SpTRSV in cuSPARSE is not open source, we
speculate that it now uses the synchronization-free SpTRSV algo-
rithm due to the short preprocessing time. Third, to address the
limitations of other approaches, our proposed CapelliniSpTRSV
is a synchronization-free approach at thread level and without a
preprocessing stage.

Table 2: Summary for different SpTRSV algorithms.

Preprocessing Storage Synchronization Processing

Algorithm overhead format required or not granularity
Level-Set high CSR yes thread/warp
Sync-Free low CsC no warp
cuSPARSE low CSR unknown unknown
CapelliniSpTRSV none CSR no thread

3 REVISITING WARP-LEVEL
SYNCHRONIZATION-FREE SPTRSV

In this section, we first show our insights in the synchronization-

free SpPTRSV algorithm, including the limitations and opportunities,

followed by an experimental study to motivate CapelliniSpTRSV

algorithm. Then, we present the technical challenges.

3.1 Motivation

Observation: Warp-level synchronization-free SpTRSV algo-
rithms cannot fully utilize GPU resources when 1) the average
number of components x per level is large, and 2) the average
number of nonzero elements per row of the sparse matrix L is
small.

Insight: Previous synchronization-free SpTRSV designs are
mainly based on 1) warp states (busy or idle) and 2) synchroniza-
tion between warps, but ignore the thread states in warps. Hence,
we call such warp-level SpTRSV coarse-grained. In contrast, we
additionally consider thread states and thread-level synchroniza-
tion within warps, which is fine-grained, just like Capellini (a very
slender kind of Italian pasta between 0.85 and 0.92 millimeters in
diameter).

Although the synchronization-free SpTRSV algorithm [20] solves
the performance bottleneck caused by synchronization, the GPU
resource still could be underutilized, especially when 1) the average

Jiya Su, Feng Zhang, Weifeng Liu, Bingsheng He, Ruofan Wu, Xiaoyong Du, Rujia Wang

number of components x per level is large, and 2) the average num-
ber of nonzero elements per row is small. The reasons are as follows.
First, the GPU device consists of a limited number of streaming
multiprocessors (SM), and each SM consists of light-weight cores.
The number of active warps for each SM is limited. If we use a warp
to handle a component, then the number of components that can be
processed simultaneously is limited in the SM. When the number
of components x in a level is large enough that exceeds the SM
threshold, the level has to be processed in several rounds. Second,
the instructions for a warp are executed in a lock-step manner,
which means that all threads in one warp need to execute the same
instruction. Assume the warp size is warp_size (32 in Nvidia GPUs).
When the related row of a component has fewer nonzero elements
than warp_size, some threads will be idle and have to wait until
the end of the warp execution.

Opportunities. A fine-grained synchronization-free SpTRSV at

thread level could solve the limitations of the warp-level synchronization-

free SpTRSV algorithm. First, when we handle components at the
thread level, we use one thread to solve one component, which is
equivalent to expand warp_size times the granularity that can be
parallelized. This is useful when the number of components in a
level is large. Second, we do not need to worry about whether the
thread will be idle waiting when the average number of non-zero el-
ements per row is small. Before we show our experimental analysis,
we use a case study for illustration.

Case study. We show the SpTRSV workflow for different algo-
rithms in Figure 2. We use the matrix L of Figure 1 as input. For sim-
plicity, we assume the GPU device can launch two warps at the same
time, and each warp can support three threads. First, in Figure 2
(a), for Level-Set SpTRSV, although it can execute at thread level,
the synchronization in the level-set design limits its parallelism.
Second, in Figure 2 (b), although the warp-level synchronization-
free algorithm achieves performance improvement by removing
synchronizations compared to Figure 2 (a), there are still many idle
threads. Note that for L(4, 4), thread3 cannot handle it along with
L(4,0) and L(4, 1) because L(4, 4) needs to be integrated with the
intermediate results after L(4, 0) and L(4, 1) are processed. Third, in
Figure 2 (c), the thread-level SpTRSV design utilizes the GPU better,
but there exist inter- and intra-warp communications, which shall
be discussed in Section 3.3.

3.2 Experimental Study

We use real sparse matrices from the University of Florida Sparse
Matrix Collection [7] to analyze the performance of warp-level
synchronization-free SpTRSV algorithm. Before we show our ex-
perimental findings, we need to design an indicator for describing
the parallelism in sparse matrices.

Parallel granularity. We define a new indicator, parallel gran-
ularity, as shown in Equation 1 to describe the influence from the
two factors: 1) the average number of components per level nj,, e,
and 2) the average number of nonzero elements per row nnzyoy.
The larger nj,q e, the worse the performance. The larger nnz, o,
the better the performance. We mainly use the logarithm function
to normalize nje,e; and nnzyow in our analysis, because these two
factors show a different range of values. We add bias of by and b,
in Equation 1 to avoid numerical errors. The parameters of bases

CapelliniSpTRSV: A Thread-Level Synchronization-Free
Sparse Triangular Solve on GPUs

ICPP °20, August 17-20, 2020, Edmonton, AB, Canada

thread 1 | L00) | L2 | Le2) L3 | LG2 | L3 160 | L6 | L6 | Les |
warp 1 4 thread2 | L(1,1) L(4,0) L(4,1) L(4,4) L(5,2) L(5.5)
L thread 3 L(7,0) L(7,1) L(7,2) L(7,7)
[thread 4
warp 2 thread 5
L thread 6 (a) Level-Set SpTRSV.
[thread 1 | 1(0,0) L2,1) L(2,2) L(4,0) L(4,4) L(5,2) L(5,5) L(7,0) L(7,7)
warp 1 4 thread 2 L(4,1) L(7,1)
thread 3 L(7,2)
[thread4 | L(1,1) L(3,1) L(3,3) L(6,0) L(6,6)
warp2 thread 5 v L(3,2) L(6,2) Data
L thread 6 v L(6,5) :": transmission
(b) Warp-Level Synchronization-Free SpTRSV. I:I Level 0
[thread 1 | L(0,0) L(6,0) L(6,2) L(6,5) L(6,6)
warp 19 thread2 | L(1,1) L(7,0) L(7,1) L(7,2) L(7,7) I:I bevel 1
L thread 3 L2,1) L(i'_f) |:| Level 2
thread 4 L@3,1) L(3,2) L(3,3)
warp 2 thread 5 L(4,0) L(4,1) L(4,4) I:I Level 3
L thread 6 L(5,2) L(5,5)
(c) Thread-Level Synchronization-Free SpTRSV (CapelliniSpTRSV). time‘

>

Figure 2: An example to show the benefits from our CapelliniSpTRSV.

and bias in Equation 1 can be adjusted by users; by default, we use
common logarithm where the all the bases are 10, and by and by
are 0.01 in Equation 1. For other values of these parameters, the

performance trend is similar.
loge,(niever)

loges(nnzyow + b1) th))

Performance trend. The performance trend of the warp-level
synchronization-free SpTRSV is shown in Figure 3. As the increase
of parallel granularity, the SpTRSV performance increases at first,
and then declines. The reason is that as the parallel granularity
increases, the GPU resources are underutilized: more idle states
appear in threads and insufficient GPU parallelism happens. A
thread-level synchronization-free SpTRSV could help when the
performance declines.

parallel_granularity = loge, (

8

~
L

o
L

Performance degradation

Performance (GFLOPS/s)
N w £ w

-
'

o
|

Parallel granularity

Figure 3: Performance trend of warp-level synchronization-
free SpTRSV. The performance declines after reaching the
peak state.

3.3 Challenges

We present the technical challenges for developing CapelliniSp-
TRSV.

Challenge 1: avoiding deadlocks. Previous deadlock solution
designs of warp-level synchronization-free SpTRSV do not work
at thread level. Previous methods [9, 20] usually use a while-loop
to constantly check whether the related value has been updated.
Because the threads in a warp of the warp-level algorithms are
designed to update the same value, they do not have deadlocks. In
thread-level design, the threads in one warp may have dependencies.
For example, if our program simply requires processing all the
elements before updating the component, then thread2 and thread3
in Figure 2 (c) shall incur deadlocks. Because thread2 and thread3
are in the same warp, when thread3 constantly checks x; for L(2, 1),
according to the GPU execution manner [9], thread?2 also executes
the same instructions, but does not update the status of xj.

Challenge 2: last element checking. In SpTRSV, when pro-
cessing a nonzero element in a row, we need to verify whether
the processed element is on the diagonal since the element on the
diagonal is the last element and processing the last element means
that the related component x; is ready to be calculated. A common
solution is to add an if statement for checking the last element be-
fore processing each nonzero element. However, such last element
checking causes runtime overhead. For example, in the process
of thread5 in Figure 2 (c), last element checking happens before
thread5 processing L(4,0) and L(4, 1), which should be removed.
In our experiments, such as matrix nlpkkt160, this overhead can
cause 27.3% performance slowdown.

ICPP °20, August 17-20, 2020, Edmonton, AB, Canada

Challenge 3: thread execution model. Although we use a
thread to handle one component, the GPUs are still executed in the
warp execution mode. In detail, the threads in the same warp have
to transmit the required components simultaneously. For example,
in Figure 2 (c), thread6 requires x for processing L(5, 2), which
can only be obtained after the third cycle. However, if we simply
use a conditional while-loop to check the condition to move on,
threadé6 starts this checking from the beginning and the thread4
and thread5 within the same warp also need to wait for thread6
in the constant condition check, which means that the processing
of L(3, 1) and L(4, 0) also needs to be postponed to the fourth cycle
though their required x; and x¢ are ready at the second cycle.

4 CapelliniSpTRSV

We present CapelliniSpTRSV, our thread-level synchronization-free
SpTRSV. We start with a design overview, followed by the basic
CapelliniSpTRSV algorithm and then our optimized algorithm.

4.1 Design Overview

We first show our three novel designs in CapelliniSpTRSV, and
then discuss how these designs solve the challenges mentioned in
Section 3.3.

Design to avoid deadlocks. We propose a two-phase mech-
anism to avoid the deadlocks in CapelliniSpTRSV. We divide the
computation process of a warp into two phases. The first phase is
for the elements in the related row of matrix L that has no inter-
dependency within a warp. These elements can be processed di-
rectly and do not cause the deadlock problem. The busy-waiting
strategy can be applied here to obtain the uncalculated data. For
example, in Figure 2 (c), thread4 in warp?2 waits xz from thread3
in warpl. The second phase relates to the rest of the elements in
the row that have inter-dependency within the warp. Instead of
using an endless loop, we use a for-loop and the number of loops
is the warp size: we guarantee the data that need to be transmitted
shall be put into the target place within a period of warp-size loops.
For example, in Figure 2 (c), thread3 waits one loop for x; from
thread2 in the same warp to process L(2, 1).

Efficient last element checking. As discussed in Challenge
2 of Section 3.3, last elements refer to the elements on the diago-
nal of matrix L. Since the time-consuming part is the constant if
checking for the last elements, a possible optimization is to reduce
the number of such last element checkings. We further analyze
the SpTRSV process, and find that to process element L(i, j), the
component x; needs to be ready. Consequently, the last element
checking can be integrated into the element processing: if x; is
ready, then the related L(i, j) must not be on the diagonal (x; is the
target to be calculated for row j) and thus is not the last element of
row i. Therefore, we only need to check the element whose relevant
component x; is not ready. For example, in the process of thread5
in Figure 2 (c), thread5 obtains x¢ for L(4,0) and x; for L(4,1), and
do not need to make further last element checking.

Adaptation to GPU thread execution. Because GPUs execute
in warps, we do not distribute components during warp execution.
Instead, we distribute tasks at the beginning of the warp execution.
For example, in Figure 2 (c), we do not distribute the task for row3
of the component x3 to thread4 during the warp execution; we

Jiya Su, Feng Zhang, Weifeng Liu, Bingsheng He, Ruofan Wu, Xiaoyong Du, Rujia Wang

distribute row3 to thread4 along with row4 to thread5 and row5
to thread6, but thread4 is in a waiting state. After the component
x1 has been processed, L(3,1) can be processed. Similar process
also happens for thread5 and thread6, which wait until the com-
ponents xo and x; are ready. With this strategy, our thread-level
execution can adapt to the current warp-based GPU architectures.
Furthermore, we propose a Writing-First optimization in Section 4.3
that threads can compute the elements and write the partial results
first without waiting for the other threads. For example, in Figure 2
(c), thread4 and thread5 can compute elements L(3, 1) and L(4, 0)
without waiting L(5, 2), and thread5 can compute the component
x4 in the fourth cycle without waiting thread4 and thread6.

Features. In addition to addressing the challenges above, CapelliniSp-

TRSV also have the following desirable features.

e No preprocessing. CapelliniSpTRSV does not involve any
preprocessing, so that our algorithm can be easily applied to
various situations.

o Strong effectiveness. By addressing the limitations of ex-
isting approaches, CapelliniSpTRSV supports sparse matri-
ces that have high parallel granularity, which enables the
synchronization-free SpTRSV design to be efficient for vari-
ous sparse matrices.

o CSR format. CapelliniSpTRSV adopts the most popular CSR
format, so that users do not need to conduct format trans-
formation.

4.2 Algorithm Design

Following the general design in Section 4.1, we propose a Two-Phase
CapelliniSpTRSV in this section.

Overview. As there is no preprocessing step, CapelliniSpTRSV
computes the components in the original row order of the sparse
matrix. As discussed in Section 4.1, the first phase is used to handle
the elements in the row of matrix L that have no inter-dependency
in a warp, and the second phase is for the rest elements that have
dependencies.

Detailed algorithm. We show our Two-Phase CapelliniSpTRSV
in Algorithm 4. In the algorithm, each thread computes a row or a
component in the original row order of the matrix. According to
the prior paragraph, we divide the elements of the row into two
groups according to the dependencies within a warp. Because the
threads compute the components in order, there is only a border
warp_begin we need to compute to divide the elements (Line 4).
We first compute the elements without the inter-warp dependency
(Lines 6-13) in the first phase, since these elements do not cause the
deadlock issue. In this group, we use the traditional busy-waiting
method (Lines 9-10).

After calculating the elements without inter-warp dependency,
we compute the interdependent elements in the second phase. Be-
cause components only depend on previous ones, after computing
all the components outside the warp, the warp can solve at least
one component in each for-loop. Hence, the maximum number
of loops for computing the components for a warp is equal to the
warp size WARP_SIZE, and we set the number of iterations for
the for-loop to the warp size (Line 14). Since threads in the same
warp execute synchronously, the traditional busy-waiting method
cannot be used. Instead, the threads have to check the finishing

CapelliniSpTRSV: A Thread-Level Synchronization-Free
Sparse Triangular Solve on GPUs

conditions. The first condition is whether the current element has
been computed or not. If the element is computed (Line 15), then
the algorithm accumulates its value (Line 16) and moves to the
next element in the same row (Lines 17-18). The second condition
is whether the current element is the last one in the row (Line
19). The col variable is the column number of the element. If col is
equal to the last one of the row, then, the algorithm will calculate
and save the component’s related value (Lines 20-22), and set the
array get_value to true (Line 23) to tell the other threads that the
component is solved.

Algorithm 4 Two-Phase CapelliniSpTRSV

1: MALLOC (xget_value, m)
2: MEMSET (xget_value, 0)
3: for i = 0 to m — 1 in parallel do

> One thread for one component

4 warp_begin «— (i/WARP_SIZE)XWARP_SIZE

5 left_sum <0

6: for j = csrRowPtr[i] to csrRowPtr[i+1]-1 do > Phase 1
7 col « csrColldx[j]

8 if col < warp_begin then

9 while get_value[col] # true do

10: /] busywait

11: left_sum « left_sum-+csrVal[j]xx[col]
12: else

13: break

14: for k = 0 to WARP_SIZE-1 do > Phase 2
15: while get_vlaue[col] = true do

16: left_sum « left_sum + csrVal[j]xx[col]
17: jej+1

18: col « csrColldx[j]

19: if col = i then

20: xi «(b[i]-left_sum)/csrVal[cstRowPtr[i+1]-1]
21: x[i] « xi

22: __threadfence()

23: get_value[i] « true

24: je—j+1

25: break

26: FREE (xget_value)

4.3 Optimization on Control Flow

In this part, we optimize the control flow of Algorithm 4, Two-Phase
CapelliniSpTRSYV, introduced in Section 4.2.

Limitation in Algorithm 4. For the first phase, The while-loop
(Line 9) has a runtime issue due to the busy waiting for the threads
in the warp: before the computation in Line 11, the thread needs
to wait for get_value[col] to be set to true; even worse, the other
threads in the same warp also need to wait due to the warp exe-
cution manner in GPUs. For example, in Figure 2, thread6 waits
until the fourth cycle to process L(5, 2); however, due to the while-
loop (Line 9), the computations of L(3, 1) for thread4 and L(4,0)
for thread5 also need to be postponed to the fourth cycle. For the
second phase (Line 14), the premise of starting the second phase is
that all threads in the same warp have finished the calculation of all
nonzero elements whose relevant components have been computed
in the other warps. Due to the warp-level synchronous execution
in GPUs, for the threads that have finished their first-phase compu-
tation, they still have to wait for the other threads in the same warp
to enter the for-loop in Line 14. For example, in Figure 2, thread5

ICPP °20, August 17-20, 2020, Edmonton, AB, Canada

cannot process L(4, 4) directly after the computation for L(4, 1), but
needs to wait for the processing of L(3, 2) and L(5, 2).

Overview. To solve the above performance limitation, we design
a Writing-First CapelliniSpTRSV, which removes the computing
part for the elements without inter-warp dependency (the first
phase), and expands the scope of the computation from the inter-
warp dependent elements (the second phases) to the whole elements
in the row.

Detailed algorithm. We show our Writing-First CapelliniSp-
TRSV in Algorithm 5. In this algorithm, each thread computes a
component, which relates to a row, in the original row order of the
matrix (Line 3). The variable j is equal to the location of the current
computing element in the CSR-format matrix (Line 5), and the vari-
able col is equal to the column number of the current element (Line
7). There are two conditions to check. The first one is about whether
the current computing element is solved. If it is true (Line 8), then
the algorithm accumulates its value (Line 9) and moves to the next
element in the same row (Lines 10-11). The second condition is
whether the current element is the last one or not. If col is equal to
the last one in the row (Line 12), then, the algorithm shall calculate
and save the related values of the component (Lines 13-15), and set
the related value in the array get_value to true (Line 16) to tell the
other threads that the component is ready.

Algorithm 5 Writing-First CapelliniSpTRSV

1: MALLOC (xget_value, m)

2: MEMSET (xget_value, 0)

3: for i = 0 to m — 1 in parallel do
4 left_sum « 0

5: j « csrRowPtr[i]

6: while j < csrRowPtr[i+1] do
7

8

9

> One thread for one component

col « csrColldx[j]
while get_value[col] = true do
left_sum « left_sum + csrVal[j]xx[col]

10: jeJj+1

11: col « csrColldx[j]

12: if i = col then

13: xi «(b[i]-left_sum)/csrVal[csrRowPtr[i+1]-1]
14: x[i] « xi

15: __threadfence()

16: get_value[i] « true

17: jej+1

18: break

19: FREE (xget_value)

4.4 Discussions

Currently, CapelliniSpTRSV only considers thread-level algorithm
designs. A common question could be whether the warp-level and
thread-level synchronization-free SpTRSV algorithms can be com-
bined together. The answer is yes, and it needs a preprocessing step
to analyze the number of nonzero elements in each row, since we
need to decide whether a row should be processed at warp-level or
thread-level based on the number of nonzero elements in the row.
For further optimization, we can decide the processing granularity,
warp-level or thread-level, for a set of consecutive rows. Moreover,
we can define a threshold: if the average number of nonzero ele-
ments is lower than the threshold, we use the thread-level SpTRSV

ICPP °20, August 17-20, 2020, Edmonton, AB, Canada

Jiya Su, Feng Zhang, Weifeng Liu, Bingsheng He, Ruofan Wu, Xiaoyong Du, Rujia Wang

» 16 N @35
g 14 cuSPARSE g 30
d 12] N zyncll-‘lr'ee‘: u'_]_ 25
. [] apelimi

910 . ° LI . P = O 201 s= °
g 8 815 ¢
g6 g
£ £ 10
€ 2 &< 5
2 o = 2 9

0.7 0.8 0.9 1.0 1.1 1.2 0.7 0.8

Parallel granularity

(a) Pascal (GeForce GTX 1080).

0.9
Parallel granularity

(b) Volta (Tesla V100).

240
235
é 30 . A
20
15
10

5

cuSPARSE
s+ SyncFree

cuSPARSE
SyncFree

e Capellini Capellini

C

Q

Performan

1.0 1.1

0.8

0.9 1.0
Parallel granularity

1.1

(c) Turing (GeForce RTX 2080 Ti).

Figure 4: Performance for different SpTRSVs.

(CapelliniSpTRSV) to process the set of rows; otherwise, we use the
warp-level synchronization-free SpTRSV. Since this work focuses
on SpTRSV without preprocessing, we leave the fusion optimization
in our future work.

5 EVALUATION

In this section, we evaluate CapelliniSpTRSV in comparison with
the state-of-the-art synchronization-free SpTRSV algorithms.

5.1 Experimental Setup

Methods. Our SpTRSV algorithm is denoted as “Capellini”. We
compare our SpTRSV with the state-of-the-art synchronization-free
SpTRSV algorithm [21], which is denoted as “SyncFree”. Because
for SpTRSV, precision is very important [20, 21, 46], we mainly
focus on the double precision. We do not further analyze level-set
based methods due to their excessive preprocessing time. Moreover,
because cuSPARSE [28] is very popular and has been widely used
in various areas, we also compare our algorithm with the SpTRSV
in cuSPARSE.

Platforms. We measure the performance of the SpTRSV algo-
rithms on three experimental platforms, as shown in Table 3, in-
cluding three generations of Nvidia GPUs (Pascal, Volta, and Turing
micro architectures).

Table 3: Platform configuration.

Platform Pascal Volta Turing
GPU GTX 1080 V100 RTX 2080 Ti
Memory Type GDDR5X HBM2 GDDRé6
CPU i7-7700K E5-2640 19-9900K
oS Ubuntu 16.04.4 Ubuntu 16.04.1 Ubuntu 18.04.4
NVCC 8 9 10.2

Datasets. We randomly download 873 sparse matrices, whose
numbers of nonzero elements are larger than 100,000, from the
University of Florida Sparse Matrix Collection [7], which have been
widely used in previous research [20, 21]. To ensure the matrices are
lower triangular (we use unit-lower triangular here), we keep only
the lower-left elements and assign values to the diagonal elements.
The average number of nonzero elements per row is 19.6, and the
average number of components per level is 12484.9.

5.2 Performance

GFLOPS. As Figure 3 in Section 3.2, the performance of SyncFree
SpTRSV decreases after the parallel granularity is larger than 0.7.
Therefore, CapelliniSpTRSV mainly focuses on the sparse matrices
with parallel granularity larger than 0.7, which include 245 matrices.
These matrices come from various domains: 42.0% from graph ap-
plications, 13.9% from circuit simulations, 11.0% from combinatorial
problems, 9.4% from linear programming problems, and 8.6% from
optimization problems. Experiments show that on all platforms,
CapelliniSpTRSV exhibits the highest performance. We show the
average performance for different algorithms on the three platforms
in Table 4. On average, CapelliniSpTRSV achieves a performance
of 6.84 GFLOPS/s, while the SyncFree SpTRSV achieves only 1.78
GFLOPS/s in such matrices, which implies that CapelliniSpTRSV
successfully handles the matrices that previous work cannot handle
in an efficient manner. The SpTRSV in cuSPARSE can also achieve a
performance of 1.92 GFLOPS/s. CapelliniSpTRSV achieves the high-
est performance for 87% of the matrices. We show the performance
results for different algorithms on various GPU platforms when the
parallel granularity ranges from 0.7 to 1.2 in Figure 4, which shows
that CapelliniSpTRSV brings significant performance benefits.
Table 4: The GFLOPS of different SpTRSV algorithms and
the percentage of matrices that achieve the optimal perfor-
mance using CapelliniSpTRSV.

Platform Pascal Volta Turing Average
SyncFree 0.65 2.72 1.98 1.78
cuSPARSE 0.90 3.24 1.63 1.92
CapelliniSpTRSV ~ 3.41 8.09 9.03 6.84
Percentage 89.39% 81.43% 91.02% 87.28%

Speedup. To further elaborate the benefits of CapelliniSpTRSV
over the other SpTRSVs when the parallel granularity is large,
we show the performance speedup of CapelliniSpTRSV over the

SyncFree and cuSPARSE algorithms in Table 5. On average, CapelliniSp-

TRSV achieves 4.97x speedup over the SyncFree SpTRSV, and 4.74x
speedup over the cuSPARSE SpTRSV for these matrices. We show
the performance speedup of CapelliniSpTRSV over SyncFree Sp-
TRSV in Figure 5, and we can see that the performance benefits
increase along with the parallel granularity. Specifically, at the
parallel granularity of 1.18, for the matrix Ip1, CapelliniSpTRSV
reaches an average 34.77x performance speedup. For the rest of
the paper, we analyze CapelliniSpTRSV on the Pascal platform; the
analysis results of other platforms are similar.

CapelliniSpTRSV: A Thread-Level Synchronization-Free

Sparse Triangular Solve on GPUs

ICPP °20, August 17-20, 2020, Edmonton, AB, Canada

+H+

Hj}1

Hj}l

|D}1

VR DD q‘b O \f’\/

Q Q" Q" Q" Q" O " NV Y

>

o M

Pascal (GeForce GTX 1080)

)4{]}4

Q

+{[k4~|

=

v A2 ¢

‘b ”) NI SAREN
QO QQJQO)QO)’\Q’\Q’\ ’\:\'

,

Volta (Tesla V100)
Parallel granularity

Turmg (GeForce RTX 2080 T1)

Figure 5: Performance speedup over the SyncFree SpTRSV for different sparse matrices.

Table 5: The average and maximum speedups over SyncFree
and cuSPARSE on different platforms.

Platform Pascal Volta Turing
Average speedup over SyncFree 5.26 4.08 5.56
Maximum speedup over SyncFree 21.02 36.48 46.8
Matrix name Ip1 Ip1 Ip1
Average speedup over cuSPARSE 4.00 3.13 7.09
Maximum speedup over cuSPARSE 23.46 29.83 107
Matrix name neos atmosmodd bayer01

Algorithm preference distribution. Because the parameter
of parallel granularity relates to two factors of 1) the average num-
ber of components per level nj,,,.; and 2) the average number of
nonzero elements per row nnzyo,,, we show the optimal algorithm
selection between CapelliniSpTRSV and SyncFree under different
factors of njeqe; and nnzrew in Figure 6. CapelliniSpTRSV is the
best choice when nj,,,.; is high and nnz, 4, is low.

A
g2 L. ‘ s SyncFree
= 51 A -
E% wa ! A Capellini
83 a 4 B
5o 20 . A appad 2
gs A a 44 " ‘» A
18151 L' el n o
== i‘ o ¥ hﬂt;f'A:“““ ‘
5..« £ 55 g
S 5 1.07 I LIy W e .
= 2 a2 T % A
e Ak e 0 A
4 b > -
ggo.s 2¢s2 A
Z
0.04
0 1 2 3 4 5 6

Number of components per level in LOG10 scale

Figure 6: Optimal algorithm distribution.

5.3 Detailed Analysis

To further analyze the benefits of CapelliniSpTRSV, we perform a
detailed performance analysis in this part.

Bandwidth. Figure 7 shows the bandwidth utilization. We use
the Nvidia performance analysis tool, nvprof; to obtain the DRAM
read and write bandwidth. CapelliniSpTRSV achieves an average
bandwidth of 56.09 GB/s for the matrices whose parallel granulari-
ties are larger than 0.7. The bandwidth utilization of CapelliniSp-
TRSV is 5.17x higher than that of the SyncFree SpTRSV and 5.25x
higher than that of the cuSPARSE SpTRSV, which proves the effec-
tiveness of CapelliniSpTRSV.

GPU instructions. CapelliniSpTRSV launches fewer warps than
the previous SyncFree SpTRSV, and our algorithm is also more con-
cise. We measure the number of GPU instructions executed and the
percentage of instruction stalls to exhibit the instruction executions
of different algorithms. Figure 8 (a) shows the number of executed
instructions; in general, CapelliniSpTRSV saves 76.02% instructions
compared to the SyncFree SpTRSV, and 56.02% instructions com-
pared to the cuSPARSE SpTRSV. Figure 8 (b) shows the instruction
stall percentage. The value of our CapelliniSpTRSV is 12.55%, which
is 25.60% lower than that of SyncFree SpTRSV and 65.40% lower
than that of cuSPARSE SpTRSV.

250
. cuSPARSE
2009 a4 SyncFree
2 . ° ° e Capellini
| e . . -
L . e e e
£ % v E
1 L]
_‘%100-. g o .: e e ..
g L4 ‘. L] eg M
N LI Y * e
R DI L1 LI R SR T L
L]

0.8

0.9 1.0
Parallel granularity
Figure 7: Bandwidth utilization (sum of read and write band-
width).

Case study. We randomly select three matrices, and show the
detailed parameters of different SpTRSVs for these matrices in Ta-
ble 6. The matrices with high parallel granularities usually have
low average number of nonzero elements per row and high average
number of components per level. For these matrices, the bandwidth
utilization and instruction efficiency of our CapelliniSpTRSV are
also better.

Optimization analysis. The performance of our Writing-First
CapelliniSpTRSV is 28.9x over that of Two-Phase CapelliniSpTRSV.
To analyze the optimization benefits of Algorithm 5 of Writing-First
strategy over Algorithm 4 of Two-Phase strategy, we compare their
bandwidth and instructions. Experiments show that our optimiza-
tion improves 4.57x bandwidth utilization, and reduces 56.16% GPU
instructions, which implies that our optimized CapelliniSpTRSV,
Algorithm 5, can better utilize the GPU computing resource and
bandwidth than the basic SpTRSV of Algorithm 4.

ICPP °20, August 17-20, 2020, Edmonton, AB, Canada

5 = vz -

L 4 as . CuSPARSE
la A ® o Ay
450 s 4 SyncFree
[]
. Yoo e Capellini

w
L

N

=
.

Instructions executed (107)

0
0.7 0.8 0.9 1.0 11 1.2
Parallel granularity

(a) Number of GPU instructions executed.

Jiya Su, Feng Zhang, Weifeng Liu, Bingsheng He, Ruofan Wu, Xiaoyong Du, Rujia Wang

70
cuSPARSE
60 1
4 SyncFree
501 e Capellini

40+

Instruction stall percentage (%)

0.7 08 09 1.0 11 1.2
Parallel granularity

(b) Percentage of instruction dependency stalls.

Figure 8: Instruction analysis.

Table 6: Detailed performance indicators for three matrices.
0: parallel granularity. a: average number of nonzero ele-
ments per row. fi: average number of components per level.

. Performance Bandwidth Instructions Stall
Algorithm

(GFLOPS/s) (GB/s) (107) (%)
rajat29 (5: 0.78; a: 4.89; f: 14636.23)
cuSPARSE 0.77 7.23 0.61 42.80
SyncFree 1.67 7.41 0.70 29.06
Capellini 7.91 17.75 0.06 15.65
bayer01 (6: 0.87; a: 3.39; f: 9622.50)
cuSPARSE 0.65 12.31 1.17 33.50
SyncFree 0.90 10.25 3.20 24.54
Capellini 3.95 48.16 0.80 14.55
circuit5M_dc (6: 0.92; a: 3.02; : 12812.06)
cuSPARSE 1.07 8.72 0.87 4481
SyncFree 1.08 9.22 1.49 29.06
Capellini 8.67 56.15 0.10 9.50

6 RELATED WORK

SpTRSV is an important function in matrix computing field, and
has attracted a lot of research efforts.

Level-set SpTRSV. Anderson and others [1] and Saltz and oth-
ers [35] proposed that level-set methods could reveal the parallelism
in sparse triangular solves However, the synchronization barrier
often limits the performance of parallel SpTRSV [16]. To address
this problem, Maumov and others [27] implemented a GPU-based
SpTRSV with a tradeoff to reduce the number of synchronizations.
Further, Park and others [30] proposed a synchronization sparsi-
fication technique that significantly reduces the overhead of syn-
chronization and improves its scalability.

Color-set and other SpTRSVs. Schreiber and Tang first used
graph coloring to construct color-sets for SpTRSV on multiproces-
sors [36]. And Suchoski and others [43] extended the method to
GPUs. Besides, Anzt and others [2] applied an iterative approach
for an approximate SpTRSV solution using GPUs.

Synchronization-free SpTRSV. Liu and others replaced the
synchronization with atomic operations [20, 25] and developed a
strategy for further parallelizing multiple right-hand sides [21] for

a synchronization-free SpTRSV at warp level, which is the state-of-
the-art SpTRSV algorithm. However, because this work is based on
the warp level, for sparse matrices with high parallel granularity,
this algorithm cannot fully utilize the GPU capacity. Different from
this work, we propose CapelliniSpTRSV, a thread-level SpTRSV
targeting the sparse matrices with high parallel granularity, which
can handle the limitation of the previous work.

Matrix optimization. In addition to the algorithms, researchers
also proposed other strategies to accelerate the matrix computing,
such as the storage format of the matrix and the access speed to
the memory. Many applications are implemented based on matri-
ces, such as linear algebra and graph kernels [3, 5, 38, 39, 50, 52].
Kulkarni and others [14] designed the Galois system, an object-
based optimistic parallelization system for irregular applications.
They also introduced a structural analysis and a data-centric for-
mulation of algorithms for the irregular data structures, which
reveal a generalized form of data-parallelism and this parallelism
may be exploited by compile-time, inspector-executor or optimistic
parallelization [32]. Zhang and others [49] removed dynamic irreg-
ularities through data reordering and job swapping to improve the
performance on GPUs. Similarly, Wu and others [47] developed
two new data reorganization algorithms to eliminate non-coalesced
memory accesses that are caused by irregular references. Picciau
and others [31] recently proposed a method that partitions the
graphical form of an input matrix into multiple sub-graphs to ob-
tain better data access locality and higher concurrency. Rodriguez
and others [33] partitioned the irregular computation of sparse
matrices into a union of regular (polyhedral) pieces which can
then be optimized by o-the-shelf polyhedral compilers. Besides,
the memory management and scheduling schemes on GPU is con-
stantly improved [10, 13, 15, 17, 18, 29, 40-42, 44, 48, 51], which
could reduce the synchronization time.

7 CONCLUSION

SpTRSVs have been extensively used in linear algebra fields, and
many GPU-based SpTRSV algorithms have been proposed. In this
paper, we identified their limitations, and developed CapelliniSp-
TRSV that efficiently supports the sparse matrices with high parallel
granularities, which cannot be handled efficiently by previous al-
gorithms. CapelliniSpTRSV can be applied to a wide range of HPC

CapelliniSpTRSV: A Thread-Level Synchronization-Free
Sparse Triangular Solve on GPUs

applications, such as iterative solver and direct solver. Experiments
show that CapelliniSpTRSV achieves 4.97x performance speedup
over the state-of-the-art synchronization-free SpTRSV and 4.74x
speedup over the SpTRSV in NVIDIA cuSPARSE. Moreover, our pro-
posed CapelliniSpTRSV is based on the most popular CSR format
and does not require preprocessing.

ACKNOWLEDGMENTS

This work is supported by the Beijing Natural Science Foundation
(L192027), Science Challenge Project (No. TZZT2016002), the Na-
tional Natural Science Foundation of China (No. 61972415, 61802412,
61732014), and the Science Foundation of China University of
Petroleum, Beijing (No. 2462019YJRC004, 2462020XKJS03). Bing-
sheng’s research is in part supported by a MoE AcRF Tier 1 grant
(T1 251RES1824) and Tier 2 grant (MOE2017-T2-1-122) in Singapore.
Feng Zhang is the corresponding author of this paper.

REFERENCES

(1]

[10]
(1]
[12]

[13]

[14]

[15]

[16

[17]

[18

[19]

[20

[21]

[22]

Edward Anderson and Youcef Saad. 1989. Solving sparse triangular linear systems
on parallel computers. International Journal of High Speed Computing (1989).
Hartwig Anzt, Edmond Chow, and Jack Dongarra. 2015. Iterative sparse triangular
solves for preconditioning. In European Conference on Parallel Processing.
David A Bader, Shiva Kintali, Kamesh Madduri, and Milena Mihail. 2007. Ap-
proximating betweenness centrality. In International Workshop on Algorithms
and Models for the Web-Graph.

Ake Bjorck. 1996. Numerical methods for least squares problems.

Aydin Bulu¢ and Kamesh Madduri. 2011. Parallel breadth-first search on dis-
tributed memory systems. In SC.

Mayank Daga and Joseph L Greathouse. 2015. Structural agnostic SpMV: Adapt-
ing CSR-adaptive for irregular matrices. In HiPC.

Timothy A Davis and Yifan Hu. 2011. The University of Florida sparse matrix
collection. ACM Trans. Math. Software (2011).

Tain S Duff, Albert Maurice Erisman, and John Ker Reid. 2017. Direct methods for
sparse matrices.

Ernesto Dufrechou and Pablo Ezzatti. 2018. Solving sparse triangular linear
systems in modern GPUs: a synchronization-free algorithm. In 26th Euromicro
International Conference on Parallel, Distributed and Network-based Processing.
Zhibin Fang, Xian-He Sun, Yong Chen, and Surendra Byna. 2009. Core-aware
memory access scheduling schemes. In IPDPS.

Joseph L Greathouse and Mayank Daga. 2014. Efficient sparse matrix-vector
multiplication on GPUs using the CSR storage format. In SC.

Bingsheng He, Naga K. Govindaraju, Qiong Luo, and Burton Smith. 2007. Efficient
Gather and Scatter Operations on Graphics Processors. In Proceedings of the 2007
ACM/IEEE Conference on Supercomputing.

Dimitris Kaseridis, Jeffrey Stuecheli, and Lizy Kurian John. 2011. Minimalist
open-page: A DRAM page-mode scheduling policy for the many-core era. In
MICRO.

Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Ramanarayanan, Kavita
Bala, and L Paul Chew. 2007. Optimistic parallelism requires abstractions. In
PLDL

Chao Li, Shuaiwen Leon Song, Hongwen Dai, Albert Sidelnik, Siva Kumar Sastry
Hari, and Huiyang Zhou. 2015. Locality-driven dynamic GPU cache bypassing.
In ICS.

Ruipeng Li and Yousef Saad. 2013. GPU-accelerated preconditioned iterative
linear solvers. The Journal of Supercomputing (2013).

Xinyu Li, Lei Liu, Shengjie Yang, Lu Peng, and Jiefan Qiu. 2019. Thinking about
A New Mechanism for Huge Page Management. In Proceedings of the 10th ACM
SIGOPS Asia-Pacific Workshop on Systems.

Lei Liu, Shengjie Yang, Lu Peng, and Xinyu Li. 2019. Hierarchical hybrid memory
management in os for tiered memory systems. TPDS (2019).

Weifeng Liu. 2015. Parallel and scalable sparse basic linear algebra subprograms.
Ph.D. Dissertation.

Weifeng Liu, Ang Li, Jonathan Hogg, lain S Duff, and Brian Vinter. 2016. A
synchronization-free algorithm for parallel sparse triangular solves. In European
Conference on Parallel Processing.

Weifeng Liu, Ang Li, Jonathan D Hogg, Iain S Duff, and Brian Vinter. 2017.
Fast synchronization-free algorithms for parallel sparse triangular solves with
multiple right-hand sides. Concurrency and Computation: Practice and Experience
(2017).

Weifeng Liu and Brian Vinter. 2015. A framework for general sparse matrix—
matrix multiplication on GPUs and heterogeneous processors. JPDC (2015).

[23

[24

™~
S

[26

[27]

(28]

[29

[30

[31

(32

[38

[39

[40

[41

=
)

[43

[44

[45

[46

[47

=
&

[49

[50

[51

[52

ICPP °20, August 17-20, 2020, Edmonton, AB, Canada

Weifeng Liu and Brian Vinter. 2015. CSR5: An efficient storage format for cross-
platform sparse matrix-vector multiplication. In ICS.

Weifeng Liu and Brian Vinter. 2015. Speculative segmented sum for sparse
matrix-vector multiplication on heterogeneous processors. Parallel Comput.
(2015).

Zhengyang Lu, Yuyao Niu, and Weifeng Liu. 2020. Efficient Block Algorithms
for Parallel Sparse Triangular Solve. In ICPP.

Kiran Matam, Siva Rama Krishna Bharadwaj Indarapu, and Kishore Kothapalli.
2012. Sparse matrix-matrix multiplication on modern architectures. In 19th
International Conference on High Performance Computing.

Maxim Naumov. 2011. Parallel solution of sparse triangular linear systems in the
preconditioned iterative methods on the GPU. NVIDIA Corp., Westford, MA, USA,
Tech. Rep. (2011).

M Naumov, LS Chien, P Vandermersch, and U Kapasi. 2010. Cusparse library. In
GPU Technology Conference.

Xiang Pan and Radu Teodorescu. 2014. Using STT-RAM to enable energy-efficient
near-threshold chip multiprocessors. In PACT.

Jongsoo Park, Mikhail Smelyanskiy, Narayanan Sundaram, and Pradeep Dubey.
2014. Sparsifying synchronization for high-performance shared-memory sparse
triangular solver. In International Supercomputing Conference.

Andrea Picciau, Gordon E Inggs, John Wickerson, Eric C Kerrigan, and George A
Constantinides. 2016. Balancing locality and concurrency: solving sparse trian-
gular systems on GPUs. In HiPC.

Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin Burtscher, M Amber
Hassaan, Rashid Kaleem, Tsung-Hsien Lee, Andrew Lenharth, Roman Manevich,
Mario Méndez-Lojo, et al. 2011. The tao of parallelism in algorithms. In PLDIL
Gabriel Rodriguez and Louis-Noél Pouchet. 2018. Polyhedral modeling of im-
mutable sparse matrices. In 8th International Workshop on Polyhedral Compilation
Techniques. Manchester, UK.

Yousef Saad. 2003. Iterative methods for sparse linear systems.

Joel H Saltz. 1990. Aggregation methods for solving sparse triangular systems
on multiprocessors. SIAM journal on scientific and statistical computing (1990).
Robert Schreiber and Wei-Pei Tang. 1982. Vectorizing the conjugate gradient
method. Unpublished manuscript, Department of Computer Science, Stanford
University (1982).

Naser Sedaghati, Te Mu, Louis-Noel Pouchet, Srinivasan Parthasarathy, and P
Sadayappan. 2015. Automatic selection of sparse matrix representation on GPUs.
In ICS.

Yogesh Simmbhan, Neel Choudhury, Charith Wickramaarachchi, Alok Kumbhare,
Marc Frincu, Cauligi Raghavendra, and Viktor Prasanna. 2015. Distributed
programming over time-series graphs. In IPDPS.

Yogesh Simmhan, Alok Kumbhare, Charith Wickramaarachchi, Soonil Nagarkar,
Santosh Ravi, Cauligi Raghavendra, and Viktor Prasanna. 2014. Goffish: A sub-
graph centric framework for large-scale graph analytics. In Euro-Par.

Clinton W Smullen, Vidyabhushan Mohan, Anurag Nigam, Sudhanva Guru-
murthi, and Mircea R Stan. 2011. Relaxing non-volatility for fast and energy-
efficient STT-RAM caches. In HPCA.

Fengguang Song, Shirley Moore, and Jack Dongarra. 2007. Feedback-directed
thread scheduling with memory considerations. In HPDC.

Fengguang Song, Shirley Moore, and Jack Dongarra. 2007. L2 cache modeling
for scientific applications on chip multi-processors. In ICPP.

Brad Suchoski, Caleb Severn, Manu Shantharam, and Padma Raghavan. 2012.
Adapting sparse triangular solution to GPUs. In ICPP Workshop.

Bin Wang, Weikuan Yu, Xian-He Sun, and Xinning Wang. 2015. Dacache: Memory
divergence-aware GPU cache management. In ICS.

Hao Wang, Weifeng Liu, Kaixi Hou, and Wu-chun Feng. 2016. Parallel transposi-
tion of sparse data structures. In ICS.

Xinliang Wang, Weifeng Liu, Wei Xue, and Li Wu. 2018. swSpTRSV: a fast sparse
triangular solve with sparse level tile layout on sunway architectures. In ACM
SIGPLAN Notices.

Bo Wu, Zhijia Zhao, Eddy Zheng Zhang, Yunlian Jiang, and Xipeng Shen. 2013.
Complexity analysis and algorithm design for reorganizing data to minimize
non-coalesced memory accesses on GPU. PPoPP (2013).

Chenhao Xie, Fu Xin, Mingsong Chen, and Shuaiwen Leon Song. 2019. OO-VR:
NUMA friendly object-oriented VR rendering framework for future NUMA-based
multi-GPU systems. In ISCA.

Eddy Z Zhang, Yunlian Jiang, Ziyu Guo, Kai Tian, and Xipeng Shen. 2011. On-
the-fly elimination of dynamic irregularities for GPU computing. ASPLOS (2011).
Feng Zhang, Weifeng Liu, Ningxuan Feng, Jidong Zhai, and Xiaoyong Du. 2019.
Performance evaluation and analysis of sparse matrix and graph kernels on
heterogeneous processors. CCF Trans. HPC (2019).

Wei Zhang, Sudhanva Gurumurthi, Mahmut T Kandemir, and Anand Sivasubra-
maniam. 2003. ICR: In-Cache Replication for Enhancing Data Cache Reliability.
In DSN.

Li Zhou, Ren Chen, Yinglong Xia, and Radu Teodorescu. 2018. C-graph: A highly
efficient concurrent graph reachability query framework. In ICPP.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Concepts and Basic SpTRSV
	2.2 Level-Set SpTRSV
	2.3 Synchronization-Free SpTRSV
	2.4 cuSPARSE Library
	2.5 Summary

	3 Revisiting Warp-Level Synchronization-Free SpTRSV
	3.1 Motivation
	3.2 Experimental Study
	3.3 Challenges

	4 CapelliniSpTRSV
	4.1 Design Overview
	4.2 Algorithm Design
	4.3 Optimization on Control Flow
	4.4 Discussions

	5 Evaluation
	5.1 Experimental Setup
	5.2 Performance
	5.3 Detailed Analysis

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

