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ABSTRACT
Solving sparse linear systems is crucial in scientific computing.
Sparse Conjugate Gradient (CG) is one of the most well-known
iterative solvers with high efficiency and low storage requirements.
However, the performance of sparse CG solvers implemented on
storage-compute separated architectures is greatly limited by the
irregular memory access and the large amount of data transmission.

In this paper, we propose a processing-in-memory (PIM) architec-
ture, ReCG, based on the resistive random-access memory (ReRAM)
to accelerate sparse CG solvers. The design of ReCG faces three
major challenges: (1) how to make complex sparse CG more suit-
able for acceleration with ReRAM-based architecture, (2) how to
map sparse and irregular operations to regular crossbars that are
more suitable for dense operations, and (3) how to coordinate the
dataflow among hardware units to minimize the impact of the poor
write endurance of ReRAMs on CG acceleration. To address these
challenges, we (1) classify the kernels of sparse CG by exploring
the commonality of operations and design a flexible and dedicated
architecture, (2) efficiently implement the sparse and irregular op-
erations by utilizing both content-addressable memory (CAM) and
multiply-and-accumulate (MAC) crossbars, and (3) develop a novel
scheduling strategy for the dataflow. The experimental results show
that ReCG improves the performance by up to three, one and one
order of magnitude compared with PETSc on CPU and GPU and
CALLIPEPLA on FPGA, respectively, and the energy consumption
is reduced by up to two, two and one order of magnitude.

KEYWORDS
Sparse Conjugate Gradient, Processing-in-memory, ReRAM, Itera-
tive Solver, Sparse Linear Algebra

1 INTRODUCTION
Solving sparse linear systems is essential in scientific and engi-
neering fields, such as fluid dynamics simulation and optimization
problems, etc., and it usually dominates the total runtime [1]. Since
the performance of sparse linear solvers is usually limited by the
irregular memory access and the large amount of data transmission,
improving the efficiency has become a key challenge. Conjugate
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Gradient (CG) [2] is an effective iterative method for solving sparse
linear systems due to its efficient convergence speed and low mem-
ory requirement. Coupled with the Jacobi preconditioner, JPCG
(Jacobi Preconditioned Conjugate Gradient) is efficient for solving
symmetric positive definite linear systems [3].

Over the past decades, researchers havemade a lot of efforts to ac-
celerate CG on CPU, GPU, and FPGA platforms, and have achieved
performance improvements [4, 5]. However, due to the limitations
of the architectures, data transmission between memories and com-
puting units requires considerable time and energy consumption,
which significantly restricts the overall performance, and has be-
come a bottleneck to accelerate sparse CG. In contrast, processing-
in-memory (PIM) breaks through architectural constraints and al-
lows in-situ computation with memory [6]. The resistive random
access-memory (ReRAM) [7], an emerging non-volatile memory
technology, is considered as a promising candidate for realizing
PIM architectures. Using ReRAMs enables us to customize PIM ac-
celerators for the sparse CG solver, thus overcoming the limitations
of storage-compute separated architectures.

However, it is challenging to implement the sparse CG algo-
rithm on ReRAM-based PIM architectures. Firstly, the sparse CG
algorithm itself is complex. There are more than 10 kernels, which
involve matrices, vectors and scalars, and there are also irregular
operations such as Reduction, which makes it difficult to realize the
CG algorithm efficiently on PIM architectures. Secondly, sparse op-
erations in CG, e.g., Sparse matrix-vector multiplication (SpMV), are
difficult to be efficiently mapped onto the multiply-and-accumulate
(MAC) crossbars, which are more suitable for dense operations. Fi-
nally, the write endurance of ReRAM is poor, and there are complex
dataflow and data handling processes in the CG algorithm, which
makes it difficult to reduce the write cost. These challenges must
be well addressed to realize a high-performance sparse CG solver
on ReRAM-based PIM accelerators.

This paper proposes ReCG, a ReRAM-based PIM architecture
for accelerating sparse CG solvers. For the challenges mentioned
above, we propose corresponding solutions. Firstly, we analyze the
sparse CG algorithm and find that the kernels can be classified into
three categories: sparse matrix operations, vector operations and
scalar operations. Therefore, we make full use of the commonality
of the operations to design a flexible and dedicated architecture,
and design a hardware structure composed of tree accumulators
and MAC crossbars to implement the irregular operations like
Reduction. Secondly, we propose a new sparse matrix compression
storage format, which efficiently computes the results of the entire
SpMV within a four-phase workflow. Finally, we comprehensively
analyze the complex dataflow and data dependencies in CG and
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propose a new dataflow scheduling strategy. With this strategy, we
successfully reduce the data transmission amount by almost half
and parallelize most of the operations in CG. At the same time, this
strategy also lowers the write cost on ReRAMs. The contributions
of this work are summarized as follows:
• To the authors’ knowledge, this is the first ReRAM-based
PIM JPCG accelerator, ReCG.
• We design a flexible architecture and formulate a hardware
structure to implement irregular operations like Reduction
in parallel using adders and MAC crossbars.
• We propose a new sparse matrix compression storage format
and a four-phase workflow that efficiently utilizes half of the
indexes to parallelly compute the entire SpMV.
• We present a novel dataflow scheduling strategy that par-
allelizes the entire algorithm and reduces the effect of poor
write endurance of ReRAM on accelerating JPCG.

2 BACKGROUND
2.1 Jacobi Preconditioned Conjugate Gradient
For solving the linear system Ax = b where A is sparse, there
are two kinds of methods: direct methods and iterative methods.
Direct methods suffer from the huge memory consumption and
extremely complex algorithm implementations, so for large-scale
problems, iterative methods are more preferred. CG [2] is a widely-
used iterativemethod. To improve the convergence, preconditioners
are usually needed. The Jacobi preconditioner [3] approximates
matrix A with its diagonal and can help reduce the number of
iterations and speed up the convergence. JPCG is an important
solver that is extensively used in practice.
Algorithm 1 JPCG solver for solving linear system Ax = b

Input: A, b, M−1 (M is the Jacobi preconditioner), x0 (initial solution
vector), 𝜏 (convergence threshold), 𝑁 (maximum number of iterations)
Output: x
1: r← b − A · x {Initialize residual vector r}
2: z← M−1 · r {Preprocess residual vector r}
3: p← z {Initialize search direction}
4: 𝑟𝑧 ← rT · z {Initialize 𝑟𝑧}
5: 𝑟𝑟 ← rT · r {Initialize 𝑟𝑟 }
6: for (𝑖 = 0; 𝑖 < 𝑁 and 𝑟𝑟 > 𝜏 ; 𝑖 + +)
7: ap← A · p {Compute ap}
8: 𝛼 ← 𝑟𝑧/(pT · ap) {Compute step size 𝛼 }
9: x← x + 𝛼 · p {Update solution vector x}
10: r← r + 𝛼 · ap {Update residual vector r}
11: z← M−1 · r {Update preconditioning vector z}
12: 𝑟𝑧𝑛𝑒𝑤 ← rT · z {Compute 𝑟𝑧𝑛𝑒𝑤 }
13: p← z + (𝑟𝑧𝑛𝑒𝑤/𝑟𝑧 ) · p {Update search direction}
14: 𝑟𝑧 ← 𝑟𝑧𝑛𝑒𝑤 {Update 𝑟𝑧}
15: 𝑟𝑟 ← rT · r {Update 𝑟𝑟 }

Algorithm 1 demonstrates the flow of JPCG. Lines 1 to 3 initialize
the residual vector r, using the preconditioning matrix M to pre-
process the residual vector r, and determining the search direction
according to the preconditioning vector. Line 4 initializes the 𝑟𝑧,
which can be used for updating the search direction. Line 5 is used
to compute the square of the norm of the residual vector r, which
can measure the size of the residuals, thus evaluating the conver-
gence of the algorithm. Lines 7 to 15 constitute a loop that updates
the intermediate vectors and scalars. As can be seen, JPCG involves
the processing of many different kernels. Its core operations include

SpMV, Reduction operation, and operations between matrices and
vectors. The SpMV plays a crucial role in the JPCG algorithm, which
accounts for more than 70% of the overall algorithm’s computation
time, as shown in Fig. 1. This work also focuses on solving the chal-
lenges of such sparse operations to better utilize the ReRAM-based
PIM technique for JPCG acceleration.
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Figure 1: The running time of SpMV in the JPCG.

2.2 Resistive Random-Access Memory
The use of new non-volatile memory devices in PIM technology
has become a new hot research topic in recent years. The most
important feature of PIM is the ability to perform in-situ computa-
tion within memory, which fundamentally avoids data movement.
Among emerging non-volatile memory devices, one of the most
widely used is ReRAM. ReRAM has the characteristics of high den-
sity, fast read and low leakage power. ReRAM-based crossbar arrays
have the remarkable capability to perform MAC operations [8–10]
through MAC arrays and search operations through CAM arrays.

ReRAM-based MAC Crossbar. Fig. 2(a) illustrates the ReRAM-
based crossbar array structure, which boasts the capability of con-
ducting in-situ matrix-vector multiplication (MVM) operations [11].
Voltages are input through the wordlines, and currents are output
from the bitlines. An input voltage applied to the crossbar cells is
converted into currents through the utilization of appropriately
configured cell conductances. Furthermore, in accordance with
Kirchhoff’s law, the currents from the cells in the same column are
accumulated along the bitline, thus performing a MAC operation.

ReRAM-based CAM Crossbar. The content addressable mem-
ory (CAM) is capable of performing data search functions, while the
ternary content addressable memory (TCAM) introduces a match-
ing function that allows for the ignoring of specific bits, thereby
achieving a more flexible and efficient data search process. Fig. 2(b)
shows the ReRAM-based TCAM structure [12, 13], where each cell
is used to represent a bit of data. The TCAM implementation uti-
lizes XNOR logic on each cell to perform bitwise search operations,
enabling parallel processing, promoting fast associative matching,
and improving the efficiency of data search.
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Figure 2: (a) The MAC array. (b) The CAM array.
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Figure 3: The ReCG Architecture.

3 RECG ACCELERATOR
ReCG is a ReRAM-based PIM accelerator for sparse CG. ReCG
uses the CAM and in-situ MAC capabilities of the crossbar array
structures to efficiently map sparse CG. It supports parallel imple-
mentations of irregular operations, such as Reduction, as well as
sparse representation and implementation of the SpMV operation.

In this section, we will discuss the design specifics of ReCG in
detail. Firstly, we will introduce the proposed architecture, which
mainly includes a sparse functional unit (SPU), a scalar functional
unit (SFU), and a vector functional unit (VFU), and introduce how
to implement the Reduction operation in parallel. Secondly, we will
elaborate on the proposed sparse representation and the four-phase
workflow to implement the SpMV operation in the SPU. Finally, we
will describe in detail how to coordinate the dataflow across the
architecture, reducing the data movement of the entire algorithm
to nearly half of the original, so as to improve performance.

3.1 Architecture
As shown in Algorithm 1, the whole CG algorithm is complex,
involving a variety of operations composed of scalar, vector, matrix
and sparse type operators, and there are more than 10 kinds of
operations in total. A straightforward implementation of CG on
ReRAM-based hardware needs to implement all the operations.
In other words, a hardware unit is specifically designed for each
operation. However, this approach requires building more than
10 different hardware units and designing separate components
within each unit for different types of operators. For problemswith a
larger matrix size, this architecture can become complex and bulky,
resulting in significant hardware costs. In view of this, we notice
the commonality of the operations in the whole CG algorithm, and
classify the operations into three types: (1) sparse computation,
that is, SpMV; (2) scalar computation; (3) vector computation. This
helps to reduce the complexity of the whole algorithm. In this work,
we design a dedicated architecture based on these three simplified
types of operations to minimize unnecessary overhead.

The architecture comprises five primary components: (1) SFU,
(2) VFU, (3) SPU, (4) Central Controller, and (5) Global Buffer. Fig.
3 provides an overview of the architecture and the organization
of several components. The Central Controller is responsible for
loading data into units and buffers, and generating the necessary
control logic to execute the CG algorithm. The Global Buffer is
used to provide the matrix A,M−1, the vector b, the initial solution
vector x0, the convergence threshold 𝜏 , the maximum number of
iterations 𝑁 , and the intermediate solution vector x computed in
each iteration. At the same time, it also stores the data that needs
to be transferred between the computing units.

The SFU is mainly responsible for the scalar computations in
the CG algorithm, i.e., it computes the result as a scalar. Six of the
fourteen steps in the CG algorithm belong to this computation.
These steps include initializing 𝑟𝑧 and 𝑟𝑟 , which are respectively
in lines 4 and 5 of Algorithm 1, and need to be completed before
entering the iterative loop. There are four more steps in the iterative
loop to compute 𝛼 , 𝑟𝑧𝑛𝑒𝑤 , 𝑟𝑧, and 𝑟𝑟 , which correspond to lines 8,
12, 14, and 15 of Algorithm 1, respectively. Initially, we consider
using MAC crossbars and dividers to implement these steps, but we
found that besides simple additions, multiplications, and divisions,
there is also the Reduction operation. If only MAC crossbars and
dividers are used, it will lead to a significant amount of unnecessary
hardware overhead, while the computation process will become
serial and slow. In order to reduce the hardware cost and to par-
allelize the whole computational process, we use a combination
of MAC crossbars, tree adders and dividers. In this design, MAC
crossbars are mainly responsible for the multiplications and partial
accumulations in these steps, while tree adders handle the Reduc-
tion operation on the output of MAC crossbars, and the dividers
deal with division computations. The use of a tree structure reduces
the number of adders and improves the parallelism.

TheVFU is responsible for handling vector computations, which
is the process of generating vectors as results. In the CG algorithm,
there are six steps that belong to this type of computation. These
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Figure 4: The SpMV Process. There is a 4-phase workflow that works together to complete the SpMV process: Compression
Phase, Loading Phase, Search Phase and Computation Phase.

steps include initializing the vectors z and p, which are in lines 2
and 3 of Algorithm 1, respectively. In addition, it involves updating
vectors x, r, z, and p in the iterative loop, in lines 9, 10, 11, and 13
of Algorithm 1, respectively. By analyzing these steps, we find that
theymainly involve addition, multiplication and division operations
between vectors and scalars. In order to handle these operations, we
design the VFU, which consists of adders, multipliers and dividers.

The SPU is used to handle the SpMV operation, which involve
initializing r and ap in lines 1 and 7 of Algorithm 1, respectively,
which is the basis of subsequent computations. SpMV plays a key
role in accelerating the CG process, which is the core step of the al-
gorithm. Therefore, we specially design the SPU to realize the SpMV.
The SPU includes multiple components, such as MAC crossbars,
CAM crossbars, registers, etc., which work together to complete
the SpMV. The details will be described in the next subsection.

3.2 SpMV
We use the example in Fig. 4 to describe the workflow of implement-
ing SpMV with the SPU. We divide the implementation of SpMV
into a four-phase workflow: compression phase, loading phase, search
phase, and computation phase [14]. The four phases are executed
sequentially, but multiple sets of data can be executed in parallel in
the same phase.

The initial idea is to use the COO format to store sparse matrices
and perform the SpMV operation. However, we realize that the
sparse matrices in linear systems solved by CG have symmetric
positive definite properties. Therefore, we make full use of this
feature to compress the data in COO format and propose a new
matrix storage method called LT-COO format. Specifically, we store
the lower triangular part of the sparse matrix in COO format ac-
cording to the row-major order. In the compression phase, we
store the sparse matrix in the LT-COO format to reduce the cost of
data storage and transmission.

After storing the sparse matrix in the LT-COO format, we write
the data stored in the LT-COO format onto the MAC and CAM
crossbar arrays. Specifically, as shown in Fig. 4, in the loading
phase, in order to reduce the write cost, we only write the indexes
of RowIndex and ColIndex in the LT-COO format except diagonal
elements to the CAM crossbar arrays, and write their corresponding
values to the MAC crossbar arrays. And the corresponding diagonal

elements are multiplied with the corresponding elements of vector
b and written to the corresponding positions in the register. Next,
in the search phase, the controller sends the indexes to the CAM
crossbar arrays. Since the matrix is symmetric, the row indexes
and column indexes are searched in parallel in the CAM crossbar
arrays. Finally, in the computation phase, based on the search
results, data 1 or 0 for controlling the transmission gate is generated,
and the corresponding vector b data is input into the transmission
gate. If the data generated by the CAM crossbar arrays is 1, the
corresponding vector b data is passed through the transmission gate
and computed with the data on the MAC crossbar arrays; If the data
is 0, the vector b cannot be passed. Then, the output result of the
MAC crossbar arrays is added with the data at the corresponding
position of the register to obtain the final result.

3.3 Scheduling Strategy
We analyze in detail the data dependencies of the scalars, vectors
and matrices in each step of the algorithm, and formulate a new
dataflow scheduling strategy, which divides the fourteen steps in the
whole algorithm into eight phases, as shown in Fig. 5. The strategy
realizes the parallel execution within the phases, and enables the
units in the whole architecture to have the capability of parallel
execution, thus improving the parallelism and accelerating the
execution speed of the algorithm. At the same time, the number of
data handling and writes are greatly reduced with this strategy.

1 r=b-A*x

2 rr=rT*r 2 z=M-1*r, p=z

3 rz=rT*z

3 ap=A*p

4 α=rz/(pT*ap)

5 x=x+α*p 5 r=r-α*ap

6 z=M-1*r 6 rr=rT*r
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Outside the iterative loop, we perform dataflow scheduling
for the original five computational steps, dividing them into three
phases. In phase two, SFU and VFU can be executed in parallel,
and steps 2 and 3 can be realized in the VFU at the same time.
In addition, we fix the sparse matrix A to the SPU, r to the SFU
and VFU, andM−1 to the VFU. As can be seen from the Fig. 5, the
proposed scheduling strategy not only improves the parallelism,
but also can only transport r and z outside the iterative loop, and
effectively reduces the amount of transport of A and r. Inside the
iterative loop, we reschedule the original nine computational steps,
dividing them into six phases based on operator dependencies.
While the sparse matrix computation is performed in the SPU
inside the iterative loop, the operations outside the iterative loop
are performed in parallel in the SFU. In phases five and seven, the
computational steps are executed in parallel in the VFU and SFU,
respectively. And in phase six, the operations are performed in
parallel in the VFU and SFU to further improve the computational
efficiency. In addition, we fix 𝛼 on VFU and r on SFU to avoid
frequent data movement and write operations, which effectively
reduces the number of data movements and writes for 𝛼 and r.

4 EVALUATION
In this section, we evaluate the ReCG design. We first introduce
the experimental setup, and then compare the time and energy
consumption of accelerating CG on CPU, GPU and FPGA. Finally,
we verify the effectiveness of the scheduling strategy.

4.1 Experimental Setup
Benchmark.We evaluate 36 real-world sparse matrices from the
SuiteSparse Matrix Collection [15], which come from different
fields such as computational fluid dynamics problem, power net-
work problem, structural problems, etc. Table 1 provides the name,
row/column number and number of non-zeros (NNZ) for each ma-
trix. The row/column numbers of the matrices span from 0.003M
to 1.565M, and the NNZ ranges from 0.099M to 114.165M.

Table 1: Benchmark information.
Matrix #Row #NNZ Matrix #Row #NNZ

ex9 0.003M 0.099M bcsstk15 0.004M 0.118M
bodyy4 0.018M 0.122M ted_B 0.011M 0.145M

ted_B_unscaled 0.011M 0.145M bcsstk24 0.004M 0.160M
nasa2910 0.003M 0.174M s3rmt3m3 0.005M 0.207M
bcsstk28 0.004M 0.219M s2rmq4m1 0.005M 0.263M
cbuckle 0.014M 0.677M olafu 0.016M 1.015M
gyro_k 0.017M 1.021M bcsstk36 0.023M 1.143M

msc10848 0.011M 1.230M raefsky4 0.020M 1.317M
nd3k 0.009M 3.280M nd6k 0.018M 6.897M

2cubes_sphere 0.101M 1.647M cfd2 0.123M 3.085M
Dubcova3 0.147M 3.637M ship_003 0.122M 3.777M
offshore 0.260M 4.243M shipsec5 0.180M 4.599M
ecology2 1.000M 4.996M tmt_sym 0.727M 5.081M
boneS01 0.127M 5.517M hood 0.221M 9.895M
bmwcra_1 0.149M 10.642M af_shell3 0.505M 17.562M
Fault_639 0.639M 27.246M Emilia_923 0.923M 40.374M
Geo_1438 1.438M 60.236M Serena 1.391M 64.132M
audikw_1 0.944M 77.652M Flan_1565 1.565M 114.165M

ReCG Configurations. There is an SPU unit, an SFU unit, and
a VFU unit. The SPU unit consists of a controller, MAC crossbars,
CAM crossbars, buffers, etc. The SFU unit consists of a controller,
MAC crossbars, a Reduction unit, buffers, etc. And the VFU unit
consists of adders, multipliers and dividers. The size of each MAC

crossbar and CAM crossbar is 128 × 128, and MAC crossbars are
connected to peripheral circuits such as ADC, S&H, etc. Each cell of
MAC crossbars and CAM crossbars represents four bits and one bit
of data, respectively. In the entire process, we use 64 bits to represent
non-zero values and perform 64-bit fixed-point arithmetic.

Methodology. Since there is no published PIM accelerator that
can implement JPCG for comparison, we compare CALLIPEPLA[5]
on the FPGA, PETSc [4] on the CPU and GPU, which are the most
widely used JPCG on the corresponding platforms. [5] is a prototype
JPCG accelerator on a Xilinx Alveo U280 FPGA. We run open-
source PETSc on an AMD 2nd EPYC 7702 CPU and a NVIDIA
Tesla A100 GPU. We use NVSim [16] to obtain the ReRAM write
energy and delay. And we utilize NeuroSim [17] to obtain other
data. NeuroSim can simulate architecture- and application-level
read operations (similar to "inference" of neural networks) to get
the energy consumption and execution delay of an entire algorithm.
The read energy consumption and latency of the CAM crossbars
are 1.08pj and 29.31ns, respectively [13, 18].

4.2 Performance Results
We compare the solving time of the 36 evaluated matrices on the
four accelerators/platforms (CPU, GPU, FPGA and ReRAM). Fig. 6
shows the comparison of solving time. For the first 11 smaller-
sized matrices (i.e., from matrix ex9 to matrix cbuckle), ReCG is
on average an order of magnitude faster compared with PETSc on
CPU, and on average twice faster than GPU, but consumes more
time than CALLIPEPLA on FPGA.

For the last 25 larger-scale matrices (i.e., from matrix olafu to
matrix Flan_1565), we note that ReCG achieves better acceleration
compared with the solving time of 11 smaller-scale matrices. Com-
pared with CPU, GPU and FPGA, ReCG can achieve the highest
acceleration levels of three orders of magnitude, one order of mag-
nitude and one order of magnitude, respectively. In addition, as
shown in Fig. 6, the acceleration of ReCG is more significant as
the matrix size increases, showing its good scalability. Compared
with the other three platforms, ReCG can more effectively support
larger-scale problems.

4.3 Energy Results
Fig. 7 shows the energy consumption of 36 matrices from SuiteS-
parse on different platforms (CPU, GPU, FPGA and ReRAM). Since
ReCG accelerates JPCG on ReRAM by using the PIM technique, and
adopts the corresponding dataflow execution strategy, its energy
consumption is minimized as much as possible. For sparse matri-
ces of different sizes, ReCG has the lowest energy consumption
compared with accelerating JPCG on CPU, GPU and FPGA, with
the highest reduction of two orders of magnitude, two orders of
magnitude, and one order of magnitude, respectively.

4.4 Scheduling Strategy Evaluation
To minimize the impact of poor write endurance of ReRAM on
accelerating JPCG, we analyze the frequency of operator usage and
data dependencies in the entire JPCG. we formulate a new dataflow
scheduling strategy, which is described in 3.3. With the schedul-
ing strategy, we significantly reduce the write time on ReRAM.
As shown in Fig. 8, we demonstrate the percentage of write time
for the first 18 matrices. After adopting the proposed scheduling
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Figure 6: The Solving time of four accelerators: PETSc on CPU and GPU, CALLIPEPLA and ReCG.

Figure 7: The energy consumption of four accelerators: PETSc on CPU and GPU, CALLIPEPLA and ReCG.

strategy, the write time is reduced by about 50%, which verifies the
effectiveness of the scheduling strategy.
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Figure 8: Write time after taking scheduling strategy and
reduced write time.

5 CONCLUSION
The feature of in-situ matrix-vector multiplication supported by
ReRAM crossbars opens a new direction for accelerating numerical
computing applications by PIM hardware. However, when regular
crossbars meet irregular sparse matrices, key challenges such as
workload mapping and dataflow scheduling must be addressed to
efficiently run irregular matrix operations on regular ReRAM cross-
bars. In this work, we propose ReCG, a ReRAM-based architecture
that can efficiently accelerate JPCG. For JPCG, we design multiple
units to achieve various kernels of JPCG. We also propose a new
dataflow execution strategy to reduce data handling. The experi-
mental results show that the performance of ReCG is improved by
up to three, one and one order of magnitude compared with PETSc
on CPU, GPU and CALLIPEPLA on FPGA, respectively, and the
energy consumption is reduced by up to two, two and one order of
magnitude.
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