
Accelerating Sparse LU Factorization with
Density-Aware Adaptive Matrix

Multiplication for Circuit Simulation

Tengcheng Wang, Wenhao Li, Haojie Pei, Yuying Sun, Zhou Jin and Weifeng Liu
Super Scientific Software Laboratory, China University of Petroleum-Beijing, China

Email: jinzhou@cup.edu.cn

Outline
oBackground

oMotivation

oDensity-aware matrix multiplication

oMachine learning driven adaptive acceleration

oExperimental results

oConclusions

01 Background
Read the netlist and establish

the circuit equation

DC analysis

Transient iteration

Newton-Raphson iteration

Convergence?

Waveform output

Model evaluation

Sparse LU factorization
（A=LU）

Triangle solution
（Ly=b，Ux=y）

With the development of integrated circuit processes, the
device feature size decreases rapidly, the circuit size
grows, and the post-layout SPICE simulation considering
parasitic effects is significantly time consuming.

[1] Tien-Hsiung Weng, Ruey-Kuen Perng, Barbara Chapman. OpenMP implementation of SPICE3 circuit simulator. International journal of parallel programming. 2007.

01 Background
Read the netlist and establish

the circuit equation

DC analysis

Transient iteration

Newton-Raphson iteration

Convergence?

Waveform output

Model evaluation

Sparse LU factorization
（A=LU）

Triangle solution
（Ly=b，Ux=y）

With the development of integrated circuit processes, the
device feature size decreases rapidly, the circuit size
grows, and the post-layout SPICE simulation considering
parasitic effects is significantly time consuming.

The most time-consuming step
in SPICE simulations is solving
for Ax = b. In post-simulations
that take parasitic effects into
account, the linear direct solution
typically takes 60-90%[1] of the
time.

[1] Tien-Hsiung Weng, Ruey-Kuen Perng, Barbara Chapman. OpenMP implementation of SPICE3 circuit simulator. International journal of parallel programming. 2007.

01 Background

preprocessing

Symbolic

Numeric

Left-looking Right-looking

Reduce fill-ins.

Identify the
locations of these
fill-in elements.

Compute the final
numerical results

Sparse LU factorization process

• The matrix is sparse (there are a large number of
zero elements).

• Non-zero elements will be added during the solution
process.

The sparse LU factorization is that factorize the square matrix A into the
product of the sparse lower triangular matrix L and the upper
triangular matrix U.

01 Background

preprocessing

Symbolic

Numeric

Left-looking Right-looking

Reduce fill-ins.

Identify the
locations of these
fill-in elements.

Compute the final
numerical results

Sparse LU factorization process

• The matrix is sparse (there are a large number of
zero elements).

• Non-zero elements will be added during the solution
process.

The sparse LU factorization is that factorize the square matrix A into the
product of the sparse lower triangular matrix L and the upper
triangular matrix U.

The numeric factorization contains
a large number of floating-point
calculations, which is generally
the most time-consuming step and
is the object of optimization in
our work.

01 Background

[1] Patrick Amestoy, Iain Duff, Jean-Yves L’Excellent. Multifrontal parallel distributed symmetric and unsymmetric solvers. Computer methods in applied mechanics and engineering. 2000.
[2] Iain Duff and John Reid. The multifrontal solution of indefinite sparse symmetric linear. TOMS '83.

MUMPS is a solver for solving large sparse linear systems using the multifrontal method. MUMPS exploits dense
submatrices in matrices and invokes a Level-3 BLAS to achieve LU factorization acceleration[1].

[2]

01 Background
SuperLU is a solver that introduces a supernode strategy into the LU factorization of unsymmetric matrices, further
utilizes a Level-3 BLAS, and solves using a right-looking algorithm[1][2][3].

[1] Piyush Sao, Xiaoye Li, Richard Vuduc. A communication-avoiding 3D algorithm for sparse LU factorization on heterogeneous systems. Journal of parallel and distributed computing. 2019.
[2] Ichitaro Yamazaki, Xiaoye Li. New scheduling strategies and hybrid programming for a parallel right-looking sparse LU factorization algorithm on multicore cluster systems. ISPA '12.
[3] Xiaoye Li, James Demmel. SuperLU_DIST: A scalable distributed-memory sparse direct solver for unsymmetric linear systems. TOMS '03.

01 Background

[1] Xiaoming Chen, Yu Wang, Huazhong Yang. An adaptive LU factorization algorithm for parallel circuit simulation. ASP-DAC '12.
[2] Xiaoming Chen, Yu Wang and Huazhong Yang. NICSLU: an adaptive sparse matrix solver for parallel circuit simulation. IEEE transactions on computer-aided design of integrated circuits and
systems. 2013.

NICSLU is a solver that uses a division of Level-sets, incorporates supernodes, and uses parallel/serial algorithms to achieve
acceleration in the numeric factorization phase based on matrix properties predictions[1][2].

The overall flow of the proposed adaptive solver An example to illustrate ETree, level, and EScheduler.

02 Motivation
The numeric factorization in supernodal LU factorization follows four steps，where K signifies the K-th iteration and N
denotes the number of matrix blocks on the diagonal.

• Factorize the diagonal block;

• Factorize the sub-matrices in L panel: L(K : N, K);

• Factorize the sub-matrices in U panel: U(K, K +1 : N);

• Perform the Schur-complement for all the tailing sub-matrices by using A = A−L×U.

02 Motivation
The numeric factorization in supernodal LU factorization follows four steps，where K signifies the K-th iteration and N
denotes the number of matrix blocks on the diagonal.

• Factorize the diagonal block;

• Factorize the sub-matrices in L panel: L(K : N, K);

• Factorize the sub-matrices in U panel: U(K, K +1 : N);

• Perform the Schur-complement for all the tailing sub-matrices by using A = A−L×U.

The Schur-complement phase
contains a large number of
GEMM operations.

02 Motivation

The time proportion of GEMM in numeric factorization.

We tested some circuit matrices.
such as the G3_circuit matrix in
the figure, which accounts for
as much as 73.4% of the time,
and most of the other matrices
tend to account for 40%-60%
of the GEMM time.

GEMM takes up much of the time for numeric factoriztaion.

02 Motivation

The time proportion of GEMM in numeric factorization.

We tested some circuit matrices.
such as the G3_circuit matrix in
the figure, which accounts for
as much as 73.4% of the time,
and most of the other matrices
tend to account for 40%-60%
of the GEMM time.

Accelerating GEMM is of
great significance for
numeric factorization
performance improvement.

GEMM takes up much of the time for numeric factoriztaion.

02 Motivation
Supernodal LU factorization will divide the sparse matrix into supernodes.

02 Motivation
Supernodal LU factorization will divide the sparse matrix into supernodes.

02 Motivation

Schur-complement

It may have some sparsity, and GEMM
operations will add unnecessary
operations.

Supernodal LU factorization will divide the sparse matrix into supernodes.

02 Motivation

In circuit simulation, the matrix usually has the

following properties:

(1) Circuit matrices are usually unsymmetric.

(2) Circuit matrices may have some dense rows

and columns (e.g., power supplies are usually

connected to a larger number of devices).

(3) Circuit matrices are often very sparse and the

distribution of non-zero elements is extremely

irregular.

02 Motivation

In circuit simulation, the matrix usually has the

following properties:

(1) Circuit matrices are usually unsymmetric.

(2) Circuit matrices may have some dense rows

and columns (e.g., power supplies are usually

connected to a larger number of devices).

(3) Circuit matrices are often very sparse and the

distribution of non-zero elements is extremely

irregular.

When solving circuit matrices by
supernodal LU factorization, it is
often difficult to form supernodes
or the formed supernodes are
sparse. It will bring additional
computational effort and time in
numeric factorization.

02 Motivation
We have selected three representative circuit matrices and can see that the matrix factors (L and U blocks)
involved in GEMM are generally sparse.

Density distribution of matrix factors (L and U blocks) participating in GEMM.

02 Motivation

Density distribution percentage of matrix factors (L and U blocks) participating in GEMM.

We have selected three representative circuit matrices and can see that the matrix factors (L and U blocks)
involved in GEMM are generally sparse.

02 Motivation

Density distribution percentage of matrix factors (L and U blocks) participating in GEMM.

The introduction of SpMM shows
great potential for further accelerating
the LU factorization.

We have selected three representative circuit matrices and can see that the matrix factors (L and U blocks)
involved in GEMM are generally sparse.

03 Density-aware matrix multiplication
• SpMM
Based on the column principal order
structure in supernodal LU factorization,
we choose dense matrix*CSC as
SpMM method.
• Oracle
Oracle is selecting the optimal case
of SpMM and GEMM at each matrix
multiplication.

Which method is best？
GEMM？SpMM？

Can a single threshold (density, matrix
size, etc.) determine the optimal method?

The “Speedup1” and “Speedup2” show that “Oracle” has a performance
improvement potential of 1.03x-10.24x and 1.13x-4.25x, respectively,
compared to GEMM and SpMM.

We analyze three cases for computing matrix multiplication time: using
GEMM, using SpMM, and using the oracle combination of GEMM and
SpMM in the supernodal LU factorization.

03 Density-aware matrix multiplication

l x：Density of L and U
block

l y： Computation time
（ 𝑙𝑜𝑔!"）
（green：SpMM；

red：GEMM）

It is difficult to define the
selection of SpMM and
GEMM by the density alone.

Is it possible to select GEMM or SpMM based on the matrix density?

03 Density-aware matrix multiplication

l x：Size of L and U block
l y： Computation time
（ 𝑙𝑜𝑔!"）
（green：SpMM；

red：GEMM）

There exists a definite
threshold 𝝈 on some matrices,
but some matrices do not have
a definite threshold
𝜎 (such as transient).

To select between GEMM
or SpMM, we require an
adaptive strategy that
combines multiple features.

Is it possible to select GEMM or SpMM based on the matrix size?

04 Machine learning driven adaptive acceleration
We need a suitable method to select the better matrix multiplication algorithm for complex and variable matrices.

Single threshold determination?

We require combining multiple matrix features to
select the optimal algorithm.

04 Machine learning driven adaptive acceleration
We need a suitable method to select the better matrix multiplication algorithm for complex and variable matrices.

Machine learning classification algorithm?

Combining machine learning algorithm with matrix features
to construct a dataset and train the model to select the better

algorithm. The above problems can be avoided.

04 Machine learning driven adaptive acceleration
We select the random forest algorithm as machine learning classification algorithm.

1) Preprcoessing

3) Model Predicting

2) Model Training 4) Peform SpMM

4) Peform GEMM

The random forest algorithm has the advantages of being able to handle higher dimensional data, high generalisation
ability of the model, can balance the errors, and the training can be easy to parallelize, etc., so it's a better choice.

04 Machine learning driven adaptive acceleration
• Dataset Source: The large-scale circuit matrices in SuiteSparse and exported by SuperLU_DIST 8.0.0.

• Samples in the dataset: Each sample contains 15 matrix features (F1-F15) and a label P, where P=1

indicates that using GEMM is better than that of SpMM, and P=0 is vice versa.

• Data preprocessing:

• Z-score normalization

• Sample equalization

• Number of samples in the dataset ：

An example of 15 matirx features (F1-F15).

05 Experimental results
Experimental platform：2 * Intel Xeon Silver 4210 CPU @ 2.20GHz, 512GB DDR4

We tested the model based on the

training set against the test set in

the sample set, and the confusion

matrix and correlation

performance were excellent.

ACC, PPV, TPR and F1-score are

all exceed 90%.

05 Experimental results
Among the six circuit matrices.
• In the matrix multiplication phase, our
work has a maximum of 9.35x and an
average of 5.35x acceleration.

• In the numeric factorization phase, our
work has a maximum of 1.76x and an
average of 1.50x acceleration.

Among the five non-circuit matrices.
• In the matrix multiplication phase，
our work has a maximum of 4.32x and
an average of 2.63x acceleration.

• In the numeric factorization phase, our
work has a maximum of 2.08x and an
average of 1.55x acceleration.It can be seen that there are different degrees of acceleration on the non-regular

matrices.

06 Conclusions

oWe propose a density-aware sparse LU factorization acceleration method, leveraging

sparse matrix multiplication in the large amount of Schur-complement updates.

oSampling method based on the sample proportion of the unit matrix in total dataset

improves the inference accuracy and model generality.

oOur method shows an average 5.35× (maximum 9.35×) speedup on 6 benchmark circuit

matrice and an average 2.62×(maximum 4.32×) speedup on 5 non-circuit matrices.

Thanks for your listening!
Any questions?

